The Spectral Radius of Infinite Graphs

نویسنده

  • JOHN SHAWE-TAYLOR
چکیده

Recently some important results have been proved showing that the gap between the largest eigenvalue A: of a finite regular graph of valency k and its second eigenvalue is related to expansion properties of the graph [1]. In this paper we investigate infinite graphs and show that in this case the expansion properties are related to the spectral radius of the graph. First we introduce necessary notions for the spectrum of an infinite graph following the definitions of [7]. For an infinite graph F with vertex set V and finitely bounded valency, the adjacency operator A is well-defined on l\V) and is bounded and self-adjoint. The spectrum of F is the approximate point spectrum of A in the space l\V); that is A e Spec ,4 if and only if there is a sequence of unit vectors x such

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

Cycle Density in Infinite Ramanujan Graphs

We introduce a technique using non-backtracking random walk for estimating the spectral radius of simple random walk. This technique relates the density of non-trivial cycles in simple random walk to that in non-backtracking random walk. We apply this to infinite Ramanujan graphs, which are regular graphs whose spectral radius equals that of the tree of the same degree. Kesten showed that the o...

متن کامل

Spectral radius of finite and infinite planar graphs and of graphs of bounded genus

It is well known that the spectral radius of a tree whose maximum degree is D cannot exceed 2 √ D − 1. In this paper we derive similar bounds for arbitrary planar graphs and for graphs of bounded genus. It is proved that a the spectral radius ρ(G) of a planar graph G of maximum vertex degree D ≥ 4 satisfies √D ≤ ρ(G) ≤ √8D − 16 + 7.75. This result is best possible up to the additive constant—we...

متن کامل

On spectral radius of strongly connected digraphs

 It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015